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Plenty of Room in the Middle:
Revealing Opportunities on a GPU Cluster via Fine-Grained
Monitoring

ANONYMOUS AUTHOR(S)

GPU clusters have become essential computing resources for academic and industrial research. However, their
high cost and growing demand often result in long queueing delays. While previous monitoring efforts have
operated at second- or minute-level frequencies, they primarily informed job-level scheduling for clusters and
lacked the detail needed to optimize GPU-level utilization.

This paper presents an in-depth study of a university research GPU cluster, analyzing resource usage at
100ms intervals, aligning with modern OS preemptive scheduling time slices. We have developed a light-
weight monitoring tool that leverages Nvidia’s DCGM library [Nvidia 2020c] to capture fine-grained "compute
utilization" metrics within GPUs. Deployed on a cluster with 89 nodes and 319 GPUs, our tool collected data
over several months. This paper focuses on a 10-day period with 7,399 jobs submitted by 150 users from
12 departments. Our study reveals three key findings. (1) the GPU cluster exhibits significant underutiliza-
tion, with over 70% of jobs using less than 20% of GPU memory and 50% averaging below 5% Streaming
Multiprocessor (SM) utilization; (2) 80% of jobs have a drastic mismatch between their requested and actual
durations, significantly limiting the scheduler’s effectiveness; and (3) multi-GPU jobs show highly periodic
communication patterns. These findings can help system designers to rethink scheduling and management
strategies, potentially transforming the GPU systems software stack and the management of GPU clusters.

Our monitoring solution is available as open-source software at: Anonymized

CCS Concepts: • Computer systems organization → Parallel architectures; Distributed architectures;
• Hardware→ Communication hardware, interfaces and storage.

Additional Key Words and Phrases: GPU monitoring, GPU utilization, cluster scheduling, multiplexing
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1 Introduction
GPU clusters have become the engines of modern AI, powering services and research across diverse
domains. The insatiable appetite of large language models and the burgeoning demands of AI
applications in science and other fields are driving an exponential growth in computing require-
ments. While GPU vendors continue to deliver increasingly powerful hardware with impressive
performance, the associated costs have skyrocketed. For instance, Nvidia’s latest Blackwell GPUs
command a hefty price tag of $30,000–$40,000 [Haddad 2024]. However, GPU clusters are signifi-
cantly underutilized[Hu et al. 2021; Jeon et al. 2019; Xiao et al. 2020], raising the critical question:
How can we substantially improve GPU cluster utilization?

In typical GPU clusters, job schedulers assign jobs to GPUs without multitasking, with each GPU
running a single job or task at a time. This approach persists even when a job uses only a small
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2 Anon.

fraction of the GPU’s Streaming Multiprocessors (SMs) or memory. The inefficiency is reminiscent
of the early days of mainframe computers in the 1960s, where jobs were processed sequentially,
leading to poor utilization of expensive hardware. The introduction of time-sharing operating
systems [Corbató et al. 1962; Corbató et al. 1971] addressed this issue by enabling multiple jobs
to share hardware resources efficiently. Yet, GPU clusters today remain constrained by similar
inefficiencies.
Why do GPU clusters still rely on job schedulers without multitasking? Three key factors

contribute to this limitation:

• Traditional GPUs do not support multitasking as they are designed for graphics [Adriaens
et al. 2012].

• GPU’s High-Bandwidth Memory (HBM) is fast but expensive and limited in capacity. Unlike
CPUs, traditional GPUs lack mechanisms like virtual memory to allow multiple processes
to share physical memory in a secure fashion.

• Parallel jobs are highly sensitive to task synchronization, where delays in one task can
bottleneck the entire job, necessitating gang scheduling [Ousterhout 1982].

Recent hardware advances have begun addressing these limitations [Zhao et al. 2022]. Nvidia’s
Multi-Instance GPU (MIG) [Nvidia 2020a] and Multi-Process Service (MPS) [Nvidia 2020b] now
enable concurrent task execution, while expanded memory capacities (up to 192GB on Blackwell)
and Unified Virtual Memory (UVM) reduce memory constraints. These developments create new
opportunities for multitasking-based utilization improvements.
To identify these opportunities, it is critical to understand the characteristics of current GPU

jobs and identify opportunities for multitasking. Previous monitoring studies have relied on coarse-
grained metrics, typically with sampling intervals of seconds to minutes, providing limited insights
into the fine-grained utilization patterns of GPU resources. To solve this problem, we have developed
a fine-grained monitoring tool capturing utilization data at 100ms intervals – aligning with modern
operating system time slices. We have deployed this lightweight, scalable tool across a university
research cluster of 89 nodes and 319 GPUs for several months.

This paper analyzes data collected during a 10-day observation period, encompassing 7,399 jobs
submitted by 150 users across 12 departments. The analysis reveals three key findings:

• Significant underutilization: Over 70% of jobs used less than 20% of GPU memory,
and 50% averaged below 5% SM utilization. This underutilization highlights a substantial
gap between the capabilities of modern GPUs and the actual resource demands of many
workloads, leaving much of the cluster’s computational power untapped.

• Pervasive mismatch between requested and actual job durations: Approximately
80% of jobs show a significant mismatch between their requested and actual runtimes, with
one-third terminated due to underestimation. This discrepancy results in poor scheduling
decisions, including inflated queue times and inefficient resource allocation, fundamentally
undermining the effectiveness of current schedulers.

• Highly periodic communication patterns in multi-GPU jobs: Multi-GPU workloads
demonstrated recurring communication patterns, including predictable bursts of NVLink
traffic and synchronization phases. These periodic behaviors present opportunities for sys-
tem designers to develop predictive resource allocation strategies, minimizing interference
and optimizing the scheduling of tasks.

These findings show great opportunities to improve GPU cluster efficiency through dynamic
resource sharing and intelligent scheduling. Using insights from fine-grained monitoring data,
system designers can create multitasking solutions that enhance GPU utilization while ensuring
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performance isolation. Such advancements could transform the management and utilization of
research GPU clusters, making them more effective and cost-efficient.

2 Monitoring Framework and Environment
We have developed and deployed a fine-grained monitoring tool to analyze activities on a university
GPU cluster.

2.1 GPU Cluster Overview
We conducted our study on a university research cluster comprising 89 nodes interconnected
through a shared general-purpose networked file system [Schmuck and Haskin 2002]. The clus-
ter is shared by researchers across multiple departments and includes the following hardware
configurations:

• High-Performance Nodes (20): Each equipped with AMD EPYC Rome CPUs (128 cores), 768
GB RAM, and two NVIDIA A100 PCIe 40GB GPUs.

• Standard Nodes (69): Each featuring Intel Ice Lake CPUs (48 cores), 100 GB RAM, and four
NVIDIA A100 SXM4 80GB GPUs.

All nodes are equipped with a 100 Gb/s ConnectX-6 InfiniBand NIC and a 1 Gb/s Ethernet NIC for
out-of-band traffic.

2.2 Design Goals and Challenges
To effectively analyze GPU utilization without disrupting cluster operations, we established the
following key design goals for the monitoring system:

• Minimal Overhead: The monitoring tool must have minimal impact on cluster performance,
with low CPU, memory, and storage usage, as data collection was planned over several
months across hundreds of GPUs.

• Operational Simplicity: The tool needed to be straightforward to deploy and operate, re-
quiring minimal configuration and maintenance to avoid burdening system administrators.

• Fine-Grained Metrics: Capturing high-resolution metrics for Streaming Multiprocessors
(SMs) utilization, memory utilization, SM occupancy, PCIe traffic, and NVLink traffic, Tensor
Core Usage, providing a comprehensive view of GPU performance.

• Robust and scalable: The tool should be pruned to node failures and can be deployed to a
large-scale GPU cluster.

We have observed that the standard nvidia-smi metric, commonly used to measure GPU
utilization, often misrepresents actual resource usage. It reports only the fraction of cycles during
which a kernel is running or a copy engine is active, failing to account for fractional SM usage. For
example, a job using just one SM out of 108 on an A100 GPU could still be reported as having 100%
utilization.

To address this limitation, we utilized the "SM Activity" metric from Nvidia’s DCGM API [Nvidia
2020c], which provides a more precise measure of GPU compute utilization. This fine-grained
metric allowed us to observe intra-GPU spatial utilization and uncover significant discrepancies in
reported utilization.
Figure 1a illustrates the discrepancy between nvidia-smi reported utilization and actual GPU

usage by showing an example of an infinite-loop kernel (20 seconds) launched with a variable
number of blocks (on an A100 with 108 SMs). DCGM-reported utilization gives an accurate view of
intra-GPU spatial utilization. After deploying the monitoring system we compared the real-world
differences. Figure 1b highlights the ratio of average utilization reported by the two approaches. This
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systematic discrepancy has significant implications for cluster efficiency analysis and scheduling
decisions, especially in scenarios involving multitasking.
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(a) Running an infinitely looping kernel on a vari-
able number of SMs. The popularly used NVML/SMI
metric may significantly over-estimate the actual
fraction of GPU SMs used.
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(b) Distribution of per-job utilization overestimates
reported by nvidia-smi compared to the DCGM
metric, stratified by job duration.

Fig. 1. Comparisons of nvidia-smi and actual (reported by DCGM) GPU SM utilization.

2.3 Design, Implementation and Deployment
To meet the design requirements, we design a monitoring tool to run on each host node, recording
its data to a database. The main loop of the tool queries DCGM along with /proc to retrieve metrics
of each attached GPU at a given frequency, write the returned results to a buffer, and then go to
sleep. When the buffer is full, the tool writes its content to its dedicated DB. At a much lower
frequency (e.g. every hour), the tool queries the GPU cluster job scheduler (currently SLURM) for
job information and writes to a separate table in the DB.

To achieve the low-overhead and efficiency goals, we develop the monitoring tool as standalone
executable, written in a few hundred lines of C. We setup a SQLite DB for each host node to avoid
any synchronization among multiple hosts. This design decision makes the monitoring tool robust
(pruned to host failures), though it requires some work to aggregate the DB data offline for data
analysis.
For our data collection, the sample period is configured to 100ms, aligning with modern OS

preemptive scheduling time slices. The local buffer size is configured to 600 samples to amortize
the overhead of writing to DB. With such configurations, the buffer consumes < 2 MB. On a host
node with 4 GPUs, the sample loop takes about 800 microseconds. At each 60 seconds, the tool
spends about 60ms to write ≈ 24k rows totaling 1 MB to DB. Thus, the overhead is ≈ 0.9% on a
single CPU core. The total DB storage is about 1.5GB/day per node. The overhead on GPUs is
negligible. Because of its minimal overhead and robustness, the university IT administrators allow
us to deploy the monitoring system on a production research GPU cluster.

Our tool is open source and available at: Anonymized
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Department # of Jobs Prop. of Reserved GPU-Time

Astronomy 136 5.6%
Chem & Bio Eng. 2184 22.7%

Chemistry 2837 38.2%
Comp. Science 306 4.9%
Elect. Eng. 227 4.6%
Genomics 119 0.9%
Mech. Eng 241 11.6%

Neuroscience 385 3.4%
Op. Research 181 0.7%

Physics 569 3.1%
Psychology 28 1.0%
Sociology 90 1.6%

Table 1. Breakdown of jobs in dataset by department. Departments which reserved ≤ 0.5% of overall GPU-
time

3 Job Characteristics
Job Distribution by Department
During the 10-day period, 7,399 jobs were submitted by 150 users from 12 departments. Table 1
summarizes the distribution of jobs by department (inferred from users’ group affiliations) and the
proportion of GPU time reserved by each department, providing insights into the cluster’s diverse
usage patterns. Computationally intensive fields such as Chemistry and Chemical & Biological
Engineering dominate GPU usage, while departments like Neuroscience and Sociology, though
contributing fewer jobs, add to the cluster’s workload diversity.

Job Duration and Categorization

101 102 103 104 105

Job Elapsed Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Duration Category
Short
Medium
Long
Very Long

Fig. 2. CDF of job elapsed time (N=7399). Colored
segments correspond to our different duration
categories.

Figure 2 presents the cumulative distribution func-
tion (CDF) of job elapsed time, which we categorized
into four groups for easier analysis:

• Short: <600 seconds (10 minutes)
• Medium: 600–7200 seconds (10 minutes–2
hours)

• Long: 7200–28800 seconds (2–8 hours)
• Very Long: >28800 seconds (8 hours)

Each category represents roughly 25% of the jobs.
The CDF reveals discrete jumps, suggesting that jobs
are often submitted with specific common time lim-
its, possibly reflecting users’ reliance on predefined
configurations.

GPU Resource Requests
Figure 3a illustrates the distribution of jobs based
on the number of GPUs and nodes requested at sub-
mission. A significant majority (95%) of jobs request
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a single GPU, with only a small fraction using multiple GPUs. However, multi-GPU and multi-node
jobs take a disproportionately large amount of the GPU time on the cluster. These findings indi-
cate that most workloads have limited parallelization in our dataset, potentially exacerbating the
under-utilization of I/O and network bandwidth. This trend could be attributed to the complexity of
parallelizing workloads across multiple GPUs or the longer queue times associated with multi-GPU
jobs. This hypothesis is supported by Figure 3b; Jobs which request multi-GPU or multi-node
configurations have significantly longer queue times on average, potentially encouraging frustrated
users to prefer issuing single-GPU jobs instead.

Completion State Percentage of Jobs
Completed 60.70
Timeout 34.17
Failed 3.15

Canceled 1.99

Table 2. Completion states of jobs (N=7,399) on the
Cluster. A significant portion (34.17%) of jobs timeout
due to insufficient requested time. A smaller fraction
are canceled by the user, or fail due to errors or host
memory constraints.

The predominance of single-GPU jobs sug-
gests that it is a main factor causing the under-
utilization of the GPU cluster as well as its net-
work and I/O resources. The high timeout rate
underscores an issue with the job-scheduling
paradigm, which requires users to pay good
attention to their resource requests.
The predominance of single-GPU jobs ap-

pears to be a factor contributing to the un-
derutilization of the GPU cluster, including
its network and I/O resources. The high time-
out rate highlights a limitation in the current
job-scheduling paradigm, requiring users to
carefully estimate and request appropriate re-
sources for their jobs.

4 Our Findings

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

Multi-Node

Single-Node, Multi-GPU

Single-GPU

Proportion Type

Job

GPU Time

(a)

1 Sec
1 Min

10 Min

1 Hr
6 Hr

1 Day
1 Week

Queue Time

Multi-Node

Single-Node, Multi-GPU

Single-GPU

(b)

Fig. 3. Classifying by Requested Resources. (𝑎) Proportions of all jobs and total allocated GPU-Time and (𝑏)
Corresponding time spent in queue. We find multi-node and multi-gpu jobs face longer queue times than
single-GPU jobs. Moreover, peak queue times even for single GPU jobs can exceed several days.

Significant Queuing. To better understand the cluster dynamics we categorize jobs into three
groups: single-GPU, single-node with multi-GPUs, and multi-node. Figure 3b portrays the distri-
butions of queue-times for each class; it is clear that requesting more resources results in longer
queuing. The gap between requesting 1 GPU vs. multiple is significant. The median queue time for
Single-GPU jobs was already nearly 2 hours. However, 2-hours does not seem long compared to
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the 2-day median queue time for multi-GPU requests. Given these dynamics, it makes sense that
the vast majority of jobs only request a single-GPU.

Under-utilization. If jobs are sitting in a queue for so long, we might expect high-overall cluster
utilization. Figure 4 displays the aggregate cluster utilization over this 10-day window. Despite the
inflow of jobs, cluster-utilization remains low with an overall GPU compute utilization of 29% and
GPU-memory utilization of 16%, with CPU resources also sitting largely unused. These aggregate
statistics echo prior monitoring studies (see §5).

0 0.2 0.4 0.6 0.8 1

GPU Memory

SM Util

0.16

0.29

Overall Cluster Utilization

(a) GPU Metrics

0 0.2 0.4 0.6 0.8 1

System RAM

CPU Util

0.17

0.21

Overall Cluster Utilization

(b) CPU Metrics

Fig. 4. Aggregate cluster utilization. Averaged over the entire cluster throughout the 10-day sample. Overall,
we find both GPU and CPU resources to be under-utilized across the cluster.

We investigate factors contributing to the widespread under-utilization and examine opportuni-
ties for future system designs.

4.1 Significant Mismatch between Requested vs. Actual Durations

<1x (=Timeout) 1-2x 2-10x 10-100x >100x
0
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Job Duration
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10 Min to 2 Hr

2 to 8 Hrs

> 8 Hours

All

Fig. 5. A significant portion of jobs over-request time. This is particularly troublesome for the longer jobs
which present difficulties for scheduling algorithms as they are receiving inaccurate inputs. This can result in
poor global decisions and thus excessive queuing.

We find there is a widespread mismatch between requested and actual time durations of the
monitored jobs. Figure 5 illustrates the ratio of requested time to actual elapsed time for jobs, cate-
gorized by requested job durations. With about 80% of jobs either underestimated or overestimated
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by a large factor. Only about 20% of requested durations fall within a factor of two of the actual
runtime, and a substantial percentage are off by more than an order of magnitude.

Table 2 shows the distribution of job completion states. While 60% of jobs complete successfully,
a notable 32% timeout due to insufficient requested time, and the remaining 8% fail due to
user cancellations, errors, or host memory constraints. The high timeout rate highlights that many
users underestimate their job runtimes, leading to wasted GPU resources for these prematurely
terminated jobs.

Over-requesting resources also has adverse effects. From the users’ perspective, overestimating
job durations increases queue delays, as the scheduler must allocate larger time slots for these jobs.

An important set of jobs are essentially idle during their actual execution time periods. Table 3
depicts the breakdown of jobs with fully-idle GPU-usage by duration. The vast majority, 1,043 jobs,
lasted less than a minute; of these 1,041 report successful completion, likely implying reservations
for very small jobs or configuration errors where a GPU was accidentally requested.

Duration Prop. of All Jobs Prop. of Reserved GPU-Time
< 1 Minute 14.1% 0.02%

[1 Minute, 10 Minutes) 0.8% 0.001%
[10 Minutes, 2 Hours] 2.2% 0.44%
[2 Hours, 8 Hours] 0.4% 0.12%

> 8 Hours 0.6% 2.15%

Table 3. Fully-Idle GPU Jobs

A non-negligible number of jobs lasting multiple hours with fully-idle GPUs present a ripe
opportunity for system designers. Out of all of the reserved GPU-time, 2.82% was spent in fully idle
jobs, with 2.15% allocated as part of long-running (> 8 hours), completely idle jobs. Whether it be
user-error in accidental GPU requests, or optimistic reservations that ended up not being needed,
it is clear that an intelligent cluster would detect and take advantage of idle resources, rather than
locking them away.

Implications
The widespread of drastic mismatch between requested and actual durations leads to job scheduler’s
poor scheduling decisions, causing low job completion rates, reduced cluster utilization, and
increased queuing delays.

There are several significant implications:
• Motivation for Avoiding User-Specified Time: Our data reveal a severe and widespread
mismatch between user-specified and actual durations, with one-third of jobs terminated
due to underestimation. This discrepancy results in substantial waste of GPU resources and
valuable human effort.

• Motivation for Automatic Runtime Predictions: Since the effectiveness of schedulers depends
on the accuracy of their input data, using historical data or learning-based approaches could
help schedulers make better decisions.

• Motivation for Multitasking: Multitasking approaches can significantly enhance GPU utiliza-
tion by running multiple tasks concurrently, effectively leveraging underutilized resources.

These implications motivate systems designers to explore new metods to manage GPU clusters.
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Fig. 6. CDFs of Single-GPU Job Utilization Metrics, stratified by duration. (a) Average GPU Utilization (b)
Peak Memory Usage
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Fig. 7. Memory Stability: (a) Fraction of recorded samples where memory usage increased across all jobs (b)
Median time between samples where memory usage increase, across all jobs.

4.2 Great Opportunities for Multitasking
Most cluster managements require users to reserve entire GPUs for fixed durations, effectively
“locking away” resources that often remain underutilized. While some jobs fully saturate their
GPUs, our data shows that this is typically only for brief periods, if at all. Many reservations
result in significant underutilization, raising the question of whether allocating entire GPUs on an
all-or-nothing basis is the most effective approach, especially given the rising cost and demand for
modern GPUs.
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(a) Comparison of querying GPU SM utilization at
different sample rates. We see significant differences
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Fig. 8. Comparisons of querying GPU SM utilization and NVLink throughput at different sample rates.

Low SM and Memory Utilizations
To study GPU utilization, we analyze the average Streaming Multiprocessor (SM) utilization and
peak memory usage for single-GPU jobs, categorized by job duration. The results, illustrated in
Figure 6, show significant underutilization:

• 50% of jobs sustain an average SM utilization of under 5%, and
• 75% of jobs have a peak memory usage of less than 20% and an average SM usage of under
20%.

These observations suggest that most jobs are far from fully utilizing GPU capabilities, a trend
likely to worsen as per-GPU performance grows faster than typical workload demands.

Efficient memory sharing is often a critical constraint for multitasking, as one task running out
of memory can disrupt other tasks. Figure 6b shows that only 5% of jobs ever reach 75% of GPU
memory capacity, and among long-running jobs (over 8 hours), just 10% exceed 90%. These results
suggest that while some jobs may have large working sets, most leave ample memory headroom,
making multitasking feasible.
Figure 7 provides additional insights into memory stability. Memory-volatility data (Figure 7a)

reveals how frequently memory usage increases during a job, while Figure 7b shows the typical
time gap between memory growth events. Many jobs exhibit relatively stable memory usage for
extended periods, reducing the risk of memory churn in multitasking scenarios.
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Since single-GPU jobs are not gang-scheduled, they are well-suited for multitasking. We have
performed a separate analysis of their SM and memory utilization, as illustrated in Figure 6a. The
figure highlights the following:

• Only 10% of single-GPU jobs achieve an average SM utilization exceeding 50%.
• Among long-running jobs (over 8 hours), 33% surpass this threshold, indicating slightly
higher but still limited utilization.

• Over 70% of single-GPU jobs utilize less than 20% of memory capacity.

These findings align closely with the overall utilization trends, as most jobs in the workload are
single-GPU jobs.

Fine Temporal Granularity
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Fig. 9. Zoomed-in view of Figure 8a

The temporal granularity of GPU utilization
sampling plays a crucial role in identifying un-
derutilized intervals. Figure 8 compares sam-
pling rates of 10 seconds, 1 second, and 100
milliseconds for both SM usage (Figure 8a)
and NVLink throughput (Figure 8b). Coarser
sampling masks significant fluctuations and
bursty behavior, potentially misleading sched-
ulers into overestimating GPU load. In contrast,
100ms sampling, as shown in the zoomed-in
trace in Figure 9, captures the more accurate
peaks and troughs in SM utilization. Similarly,
NVLink traffic reveals highly bursty patterns
at fine-grained timescales.
These data demonstrate the importance of

granular telemetry when considering optimal
resource allocation. A scheduler can take advantage of fine-grained utilization data to dynamically
enqueue additional tasks onto a GPU without waiting for the current job to complete.

Implications
Our data expose the severe underutilization of GPU’s SMs and memory or great opportunities for
multitasking on GPUs. There are several implications:

• Motivation for multitasking: Dynamic multitasking could unlock significant available re-
sources, particularly 70% of jobs consume less than 20% SMs and memory.

• Opportunity to Pack Single-GPU Jobs: Single-GPU jobs are good candidates for multiplexing
as they are not gang-scheduled and do not incur inter-GPU traffic. These jobs are account
for a sustainable fraction of aggregate cluster usage.

• Motivation for Using Fine-Grained Time Slices: Fine-grained preemptive scheduling time
slides such as 100-200ms, similar to the modern OS for CPUs, give more opportunities to
improve GPU utilizations.

Nvidia’s Multi-Instance GPU (MIG) [Nvidia 2020a], Multi-Process Service (MPS) [Nvidia 2020b]
and Uniform Virtual Memory (UVM) [Nvidia 2017] are advancing toward greater maturity. These
mechanisms offer promising opportunities to explore multitasking and unlock nearly 80% of
underutilized GPU resources.
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4.3 Highly Periodic, and Predictable, Communication Patterns
While most of the jobs on this cluster are isolated single-GPU jobs, figure 3a indicates that 26%
of allocated GPU time was for parallel workloads, and presume this quantity to be significantly
higher for AI and HPC dedicated clusters. The nature of parallel workloads, & accompanying
synchronization, poses a significant challenge to multitasking. Unintended interference can have
compounding straggler effects [Wu et al. 2024].
To determine the possibility of interleaving tasks alongside parallel workloads we investigated

communication patterns of Multi-GPU workloads at a link utilization granularity. Given the large
number of jobs, we present three representative examples.

Single-Node Patterns
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Fig. 11. Single-Node Psychology Job
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4.3.1 Neuroscience Job. Figures 10a and 10b illustrate NVLink usage in a parallel neuroscience
workload using 4 GPUs within a single node. This job demonstrates a periodic communication
phase of approximately 17 minutes, with additional bursts occurring roughly once per minute. The
left panel (Figure 10a) shows the consistent repetition of large-scale patterns throughout the job’s
runtime, while the right panel (Figure 10b) zooms in on the finer-grained bursts. This structured
periodicity indicates that higher-level software systems can estimate NVLink traffic given a small
initial sample of metrics.

4.3.2 Psychology Job. Figures 11a and 11b depict a psychology workload, also using 4 GPUs
within a single node. This job exhibits mixed burst patterns, with bursts occurring at intervals
of approximately 10 seconds and 60 seconds, respectively. While these intervals differ from the
neuroscience example, the repetitive nature of NVLink traffic remains consistent, reflecting the
structured communication demands of the application.

Comprehensive Picture
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Fig. 12. Slice from 4-Node, 16-GPU workload: Periodicity across all resources & frequent pockets of SM
idleness (4th row, red)

Periodicity among all resource dimensions can be seen in figure 12, captured from a 4-Node,
16-GPU EE job, likely doing AI training; this pattern repeats for 12 hours with almost no noise. We
can infer communication behavior through a combination of traffic metrics. The network metrics
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come the node’s singular InfiniBand NIC, while the interconnect metrics are for a specific GPU
within the node. The PCIe TX/RX metric traffic includes bytes sent to/received from network card
during RDMA in addition to bytes sent/recv from system memory. Note that interconnect graphs
are in network units (Gb/s).

We see that this job is clearly bottlenecked by network bandwidth (purple/orange – the TX/RX
lines are nearly identical), which reaches full saturation of ≈ 100Gb/s for 2-second windows. In this
scnenario, both NVLink and PCIe are constrained to the network limit.

We can deduce the selected GPU in 12 is continually transmitting over the network as the PCIe
TX readings (in pink, second plot) align with the node’s network TX readings. It is not transmitting
to other intra-node GPUs (0 NVLink TX traffic from this selected GPU). The PCIe RX throughput
implies inbound network traffic is split among multiple GPUs in this system. Other GPUs initially
receive traffic (flat blue PCIe RX line) and then this GPU receives a partial share. These readings
agree with the intra-node NVLink RX traffic this GPU receives (top plot in green) as it first is
reading at the network limit and then drops off when it is receiving some data directly from the
NIC via RDMA.

We highlight that GPU SM Utilization (in red) fluctuates in lock-step with the overall communi-
cation pattern. Fully-idle GPUs result from what we presume to be global synchronization. In this
example for every 7-second period, 1-second is spent idle. Accounting for 16-GPUs and a 12-hour
duration, this implies around 21 hours of available GPU-computation that can be packed into these
troughs.
The motif of small pockets of SM idleness, occurring at frequent and regular intervals, is the

common case for many network-bound distributed GPU applications . Despite it’s highly parallel
nature, this type of job is a valid candidate to multi-task alongside. GPU memory usage is shown
staying flat at 50% (it does not change for hours) in lavender (second from bottom), leaving ample
space for other jobs’ data.

Implications
Our analysis underscores the importance of high GPU-interconnect and network bandwidth. Single-
Node jobs can exhibit full NVLink saturation during blocking communication phases. Figure 8 high-
lights how insufficient interconnect performance can degrade throughput during communication-
intensive phases. Distributed jobs can be bottlenecked by network bandwidth and fail to saturate
high-BW NVLinks and ultimately cause SM idle periods. The analysis indicates:

• Opportunity for Accurate Traffic Predictions: Repetitive communication patters present an
opportunity for accurate traffic prediction. Scheduling tasks in an “out-of-phase” manner
could help minimize contention and maintain consistent throughput.

• Opportunity to Address Synchronization-Induced Idle Periods: Transparent multitasking along-
side long-running distributed jobs can significantly improve cluster utilization, especially in
bandwidth-limited environments where communication delays often cause extended GPU
idleness.

The general challenge to take advantage of these opportunities is to minimize interference during
the bursty communication periods.

5 Related Work
GPU Monitoring APIs. Despite growing awareness of underutilization, few production systems

have deployed sub-second sampling to characterize bursty or partial GPU usage. We summarize
key differences between our work and prior monitoring work in Table 4. The DCGM API supports
high-resolution telemetry (e.g., SM Active, SM Occupancy, NVLink, PCIe) at 100–200ms intervals,
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Prior Work Spatial
Granularity

Temporal
Granularity

Studied Workloads

Philly [Jeon et al. 2019] Coarse 100 seconds Deep Learning
AntMan [Xiao et al. 2020] Coarse ≈ 1 second1 Deep Learning
Helios [Hu et al. 2021] Coarse 100 seconds Deep Learning
Weng et al. [2022] Coarse 15 seconds Deep Learning

Moneo [Jiang et al. 2022] Fine Variable2 3 Individual DL Training Jobs3
Ours Fine 100 ms Mixed (12 disciplines)

Table 4. Comparison to several prior works studying cluster utilization. Prior works only use coarse-grained
GPU utilization monitoring (NVML), and only consider time-scales up to 1-second granularity. Our work
considers both fine-grained monitoring of SM utilization (DCGM) and sub-second temporal granularity.

but it is rarely used at scale. To our knowledge, our work is among the first to deploy DCGM
cluster-wide for an extended period and for a variety of workloads beyond large-scale deep learning.
This approach reveals patterns —such as frequent GPU idleness, partial SM occupancy, and bursty
interconnect usage—that remain hidden when sampling at intervals of one second or longer.

GPU Cluster Monitoring. Monitoring GPU-based clusters has been a significant topic of research,
with numerous tools and frameworks designed to track resource usage. One of the earliest and
most broadly adopted systems is Ganglia [Massie et al. 2004], which provides cluster-wide resource
utilization metrics via a hierarchical design. Although Ganglia can be extended to expose GPU
statistics (e.g., through an NVIDIA GPU monitoring module), it typically leverages the NVIDIA
Management Library (NVML) [Nvidia 2007], offering only coarse-grained GPU usage data. Conse-
quently, Ganglia-based monitoring lacks sub-second resolution and may miss rapid fluctuations
in GPU compute, memory, or interconnect utilization. We instead designed our own monitoring
solution to have more precise control over monitoring and sampling parameters.

We are not the first to champion fine-grained, cluster-wide GPU monitoring; Moneo [Jiang et al.
2022] is a tool developed by Microsoft which also adopts fine-grained monitoring of GPU metrics.
While Jiang et al. propose capturing fine-grained metrics, they only study a limited selection of
hand-picked deep learning training jobs. However, despite the availability of such tools, they remain
unpopular for use on HPC research clusters; A recent study by Weakley et al. [2025] surveys GPU
monitoring practices in HPC clusters, finding that the newer NVIDIA Data Center GPU Manager
(DCGM) API [Nvidia 2020c]—which supports sub-second sampling—remains under-adopted. They
attribute this to limited compatibility with older GPUs and the overhead of integrating DCGM with
existing monitoring systems. We hope that our work serves to raise broader awareness.

In practice, the predominant monitoring infrastructure consists of deploying a container-based
solution composed of Nvidia’s dcgm_exporter (for GPU metrics) & the Prometheus monitoring
framework [Rabenstein and Volz 2015] (for CPU-side metrics and & a time-series DB). This setup
is targeted for Kubernetes-based clusters and is non-trivial to setup and control. The jobstats
utility developed by Plazonic and Halverson [2024] applies to SLURM based-clusters; however
it queries only coarse-grained utilization metrics. Our monitoring tool can be deployed on any
baremetal Nvidia Data-Center GPU server (without dependencies) and is trivial to start/stop from
the command line (start/kill the daemon process).

Prior Characterization Studies. Several large-scale studies have examined GPU cluster utilization
to identify inefficiencies and guide improvements in resource management; We provide a high-level
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summary of the differences with our work in Table 4. Philly [Jeon et al. 2019] from Microsoft was
among the first to report considerable underutilization in a large-scale multi-tenant GPU cluster
dedicated mostly to deep learning. Philly relied on NVML-based sampling at 100-second intervals,
limiting its ability to capture sub-second bursts or fractional GPU usage. While underutilization in
Philly was largely attributed to network constraints and gang scheduling, our results demonstrate
that, even on nodes running a single job, significant idle periods occur that only become apparent
when sampling at finer granularity. Helios [Hu et al. 2021] took a closer look at multiple production
clusters running various GPU workloads. Like Philly, Helios employed NVML for coarse-grained
(100-second) sampling and did not measure fractional SM utilization. Although Helios confirmed
the prevalence of low GPU utilization and long queue times, it left open questions about the root
causes of underutilization within each job’s runtime. More recently, Weng et al. [2022] characterize
utilization in a production cluster which supports time-multiplexed sharing of GPUs between jobs,
demonstrating low contention for SM resources in their analysis. While a strong preliminary step
towards improving utilization, our results show that significant fractions of GPU SM resources
remain un-utilized by jobs; As time-slicing alone cannot allow for the sharing of these resources,
we feel fine-grained monitoring of utilization reveal greater opportunities for multiplexing. Our
sub-second analysis highlights internal idle phases and scheduling opportunities that standard
job-level metrics cannot readily detect.

GPU Multitasking and Scheduling Approaches. Many researchers have explored the idea of
workload-independent GPU sharing [Adriaens et al. 2012; Chen et al. 2017; Liang et al. 2015;
Mahajan et al. 2020; Park et al. 2015; Sedighi et al. 2024; Tanasic et al. 2014; Wang et al. 2016].
Much of recent work regarding GPU-multitasking has concentrated on machine-learning focused
workloads.Gandiva [Xiao et al. 2018] considers time-slicing shared GPU resources between multiple
jobs. AntMan [Xiao et al. 2020] introduces a software layer to multiplex GPU compute and memory
resources, improving overall cluster usage. Like prior work, AntMan’s monitoring relies on NVML
at roughly 1 s intervals, thus it still may miss quickly shifting utilization patterns. Nevertheless, its
reported improvements underline the potential of GPU multi-tenancy—a conclusion our results
reinforce. By measuring SM usage at sub-second granularity, we demonstrate that jobs often leave
enough unused SM capacity for other processes to co-locate effectively.
More recently, Orion [Strati et al. 2024] proposes a method for fine-grained sharing of GPU

workloads on a single node, showing that performant and interference-aware multiplexing of
GPU resources is possible. However, Orion relies on GPU utilization profiles collected offline,
limiting its applicability to general user applications. We believe there is room for systems based
on dynamic, real-time profiling of workloads to allow for flexible, application-agnostic sharing
of GPUs. Based on the Helios dataset, Hu et al. [2021] proposed a “Quasi-Shortest-Service-First
(QSSF)" scheduler, which uses historical job records to predict runtime and reduce queuing for
large multi-GPU jobs. However, QSSF assumes relative stability in job behavior and easy access
to training data, assumptions that may not hold in research environments where development
and debugging are common. Our findings suggest that more adaptive scheduling strategies, fed by
fine-grained performance metrics, could mitigate these shortcomings.

6 Limitations
Sampling Rate. We used the highest sampling frequency, 10 Hz, offered by DCGM [Nvidia 2020c];

however, we would have preferred to collect data at even higher rates if the API had allowed
it, given our low-overhead monitoring tool supports rates 10–100× faster. While our temporal
resolution exceeds that of prior monitoring studies, interconnect and network measurements are
still aggregated over 100ms windows, which may smooth out short-lived communication spikes and
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obscure burstiness. Moreover, individual GPU kernels often execute on a timescale of microseconds
to single-digit milliseconds. Profiling tools such as Nvidia Nsight Systems (nsys) can capture this
data (as a background process), but are not applicable for cluster-scale monitoring due to job
degradation.

Duration of Study. Although we ran the monitoring tool for several months, we only retrieved
precise mappings of Job ID to GPU ID(s) for the final 10 days. Rather than making potentially
inaccurate inferences about which jobs ran on which devices, we limited our analysis to the clean,
fully instrumented dataset.

Job Types and Diversity. Because most jobs in the cluster requested only a single GPU, we
collected fewer samples of multi-GPU workloads (343 in total) and of these only 7 multi-node
workloads. Our insight into the frequencies and behaviors of domain-specific workloads (e.g. ML
or HPC workloads) is limited; our analysis aggregated from all departments.

Cluster Hardware and Heterogeneity. The cluster included two GPU types (A100 PCIe 40GB and
A100 SXM4 80GB). We combined them into a single dataset for simplicity, as we report utilization
in percentages. However, these GPUs differ in their interconnect bandwidth (PCIe vs. NVLink).
Because most jobs were single-node, the impact of these differences on our overall findings was
small. Nonetheless, future work should investigate how heterogeneous hardware and network
capabilities affect cluster utilization and communication patterns.

7 Conclusion
This paper presents a fine-grained analysis of a university research GPU cluster through a light-
weight monitoring tool operating at 100ms granularity. Our study reveals three key findings: (1)
severe underutilization, with over 70% of jobs using less than 20% of GPU memory and 50% of
jobs averaging below 5% SM utilization; (2) pervasive mismatch between requested and actual
job durations, affecting 80% of jobs and fundamentally limiting scheduler effectiveness; and (3)
highly periodic communication patterns in multi-GPU jobs, suggesting opportunities for predictive
resource allocation and compatible multiplexing.
These results, coupled with emerging technologies like MIG, MPS, and UVM, indicate signifi-

cant potential for improving cluster efficiency through dynamic resource sharing and intelligent
scheduling. By leveraging fine-grained monitoring data, system designers can develop multitasking
solutions that maximize GPU utilization while maintaining performance isolation, potentially
transforming how research GPU clusters are managed and utilized.
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