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ABSTRACT
The rapid expansion of large language models and long-context training has intensified GPU memory capacity
bottlenecks. Existing single-GPU solutions — reduced micro-batch size, offloading, and recomputation — enable
greater scale, but often sacrifice throughput due to exposed latency overheads, exposed communication costs, or
adding redundant FLOPs. Moreover, these techniques typically require manual tuning based on combination of
hardware environment, model size/architecture, and context length. We present Adaptive Working Set Strategy
(AdaWS), an orchestration procedure that is general and adaptable to a specific training environment (hardware +
model + sequence length). AdaWS maintains a small working set in GPU memory and conducts asynchronous,
bidirectional data transfers with secondary host memory. Our generalized computation and communication
schedules are conducive to automatic discovery of appropriate runtime decisions based on training environment:
micro-batch sizing, offloading policy, and recomputation policy. In turn, our approach offers a portable and
user-friendly solution. Through timely prefetching and recomputation avoidance, AdaWS surpasses the throughput
of state-of-the-art baselines while using far less GPU memory: for instance, 18 GB vs. 77 GB for Dense-15B
and 18 GB vs. 75 GB for Sparse-16B×3B. The system particularly excels at long-context training, where
ample computation density allows for full utilization of the CPU-GPU memory complex. AdaWS improves the
throughput of long-context training by 1.4×–2.2× and extends trainable context lengths by 4× under typical
memory budgets. As a result, our approach enables large-model or long-context training on both datacenter and
commodity GPUs at high efficiency. We open source the code at: https://github.com/als244/awsm_
dataflow.

1 INTRODUCTION

Modern GPU-accelerated computing systems deliver enor-
mous parallel processing power but are increasingly con-
strained by limited onboard memory capacity. As model
sizes and data footprints continue to grow, GPU memory
capacity has emerged as a key bottleneck that restricts both
scalability and efficiency.

This limitation has become even more critical with recent
shifts toward long-context training and Mixture-of-Experts
(MoE) (Jacobs et al., 1991; Shazeer et al., 2017) variants for
large language models (LLMs). Training on long sequences,
which significantly increases both computation and memory
demand, typically requires modifications to usual standard
training process. Sparse models, with large numbers of
parameters and increased batch sizes, further exacerbate
memory issues.
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To combat increased GPU memory footprint demands, de-
velopers are often forced into difficult tradeoffs: reducing
batch size, offloading training states, relying on recomputa-
tion strategies, or sharding models across multiple devices.
These inter-dependent, performance-degrading tradeoffs
highlight the urgent need for more intelligent and adaptive
GPU memory management solutions.1

The working set is a well-known concept introduced in the
late 1960s (Denning, 1967) to model program behavior. It
refers to the collection of memory pages that a program
has referenced within a recent time window. Since most
programs exhibit strong temporal and spatial locality, a pro-
gram’s working set is typically much smaller than its total
memory footprint. The working set model has been highly
effective in guiding virtual memory (VM) management for
CPU-based computer systems, where the operating system
maintains the active working set in physical memory and
uses secondary storage as a backing store for inactive pages.

For Transformer training, the gap between the overall mem-
ory footprint and its true working set is striking. As illus-

1In this work we focus on single-GPU case.
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Figure 1. Only a small working set in GPU memory is required for
high-throughput training (§4).

trated in Figure 1, only a small fraction of overall appli-
cation footprint is actively accessed in a fixed window of
time. This indicates an opportunity to significantly reduce
the GPU memory requirement.

The GPU counterpart of VM is Unified Virtual Memory
(UVM), where host memory serves as a backing store for
device memory. It is primarily designed to improve pro-
grammability (Allen & Ge, 2021). However, when a GPU
kernel accesses a page in CPU memory, the GPU is forced to
stall; the solution of demand-paging comes with significant
overhead and thus is not a practical training solution.

We propose an Adaptive Working Set Strategy (AdaWS)
for Transformer training — aimed to minimize the GPU
memory requirement while preserving high throughput. We
exploit the temporal locality of large AI training to over-
come the 30×-100× gap between GPU memory bandwidth
and PCIe interconnect bandwidth. We employ efficient
prefetching with just-in-time data transfers to maintain a
small working set. Our approach ingests information about
the hardware environment, model architecture, and sequence
length to automatically determine batch sizing, offloading,
and recomputation policies. AdaWS then orchestrates a
dataflow process that performs timely data transfers be-
tween host and GPU memories, entirely overlapped with
computation.

AdaWS achieves superior performance and memory effi-
ciency compared to state-of-the-art offloading approaches.
The minimal GPU memory required for AdaWS to surpass
the throughput of the best baseline systems is dramatically
lower (§4): for Llama3-8B, AdaWS requires 56 GB vs. 73
GB; for OLMoE-7B×1B, 20 GB vs. 77 GB; for Dense-15B,
18 GB vs. 77 GB; and for Sparse-16B×3B, 18 GB vs. 75
GB. For long-context sequence lengths that are trainable
with existing strategies, AdaWS improves throughput by
1.4× – 2.2×. Moreover, it extends the frontier of trainable
context lengths under typical memory budgets by up to 4×,

enabling efficient long-context training previously infeasible
on the same hardware.

Although we implemented and tested our idea on discrete
GPUs, the proposed framework offers a methodology for dy-
namic data movement in heterogeneous systems. We believe
the same principles apply for smaller-scale laptop, mobile,
or edge settings with multi-level memory hierarchies atop
the main computational processor.

We make the following contributions:
• Enable high-throughput, single-device Transformer

training under device and host memory constraints
with automated system configuration. (§3)

• Drastically reduce the amount of device memory re-
quired for model training via asynchronous, bidirec-
tional dataflow with secondary host memory. (§4.2)

• Enable long-context training with MFU equal to
throughput of attention kernel. (§4.4)

• Automatic configuration to adapt to model complexity
and GPU characteristics. (§4.6)

2 BACKGROUND & RELATED WORK

2.1 Transformer Training Pipeline

Transformer models (Vaswani et al., 2017) form the compu-
tational backbone of modern large language models (LLMs).
Training these models involves executing a sequence of
highly structured operations that repeatedly move data
through attention, feed-forward, and normalization layers
across many tokens and layers. We focus on autoregres-
sive, causal-attention architectures, covering both dense and
sparse (Mixture-of-Experts, MoE) variants representative
of recent open-source models such as Llama3 (Grattafiori,
2024) and Qwen3 (Yang, 2025).

Memory Composition. The total GPU memory footprint
during training can be divided into: (1) model parameters,
(2) temporary activations, (3) model gradients, and (4) opti-
mizer state. Among these, activations scale with sequence
length × batch size, while gradients and optimizer states
scale with the model size Ψ.

2.2 Challenges

Training large Transformers, especially MoE and long-
context variants, presents four interrelated challenges:

1. Minimal GPU Memory. Model parameters, activa-
tions, gradients, and optimizer states often collectively
exceed the onboard memory of even high-end GPUs.

2. High Throughput. Memory-saving methods often
degrade throughput due to recomputation, communica-
tion, or data-transfer overheads.
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3. Long-Context Training. Expanding sequence length
normally increases activation footprint, rapidly ex-
hausting GPU memory.

4. Automatic Configuration. Manual tuning of batch
size, recomputation strategy, offload ratios, and data
placement is labor-intensive and hardware-specific.

2.3 Related Work

A variety of approaches have been proposed to address
Transformer memory bottlenecks, each targeting a subset of
these challenges.

Reducing Batch Size. Shrinking the micro-batch size di-
rectly lowers activation memory but typically reduces arith-
metic intensity and GPU utilization, harming throughput
(addresses challenge (1) but worsens (2)).

Activation Recomputation. Checkpointing or remateri-
alization (Chen et al., 2016; Jain et al., 2020; Beaumont
et al., 2021; Kirisame et al., 2020; Korthikanti et al., 2023)
reduces memory by recomputing dropped activations during
the backward pass. While effective for challenge (1), it
incurs additional compute and limits throughput (2).

Offloading. Systems such as ZeRO-Offload and ZeRO-
Infinity (Ren et al., 2021; Rajbhandari et al., 2021), as well
as SwapAdvisor and Capuchin (Huang et al., 2020; Peng
et al., 2020), move parameters or optimizer states to CPU or
NVMe storage. Offloading directly reduces GPU memory
pressure (1) but introduces I/O latency that can idle the
GPU, lowering throughput (2). These systems also require
manual configuration of offload granularity, leaving (4) only
partially addressed.

Fused Kernels. Fusing sequential GPU operations (Dao
et al., 2022; Hsu et al., 2025) decreases intermediate acti-
vations and kernel-launch overheads, improving memory
usage (1) and throughput (2), with the price of increased
implementation complexity. However, it does not address
(3) or (4).

Distributed Training and Sharding. Parallelism strate-
gies—pipeline (Huang et al., 2019; Narayanan et al., 2019),
tensor (Narayanan et al., 2021; Korthikanti et al., 2023), ex-
pert (Fedus et al., 2022; Dai et al., 2024), and context paral-
lelism (Jacobs et al., 2023; Liu et al., 2024)—expand aggre-
gate memory capacity by distributing model states. Frame-
works like ZeRO (Rajbhandari et al., 2020) and FSDP (Zhao
et al., 2023) effectively reduce per-GPU memory (1) but at
the cost of communication overhead that can limit through-
put (2). Context-parallelism strategies target (3), but require
expensive hardware and high-bandwidth communication,
limiting scalability. Distributed training usually relies on
careful manual configuration, failing to address (4).

Parameter-Efficient Fine-Tuning (PEFT). Approaches

such as LoRA (Hu et al., 2022) and QLoRA (Dettmers et al.,
2023) train only a small subset of parameters, reducing the
memory footprint (1) and compute cost. However, they alter
the optimization objective and are not applicable to full pre-
training or finetuning, leaving (2)–(4) largely unaddressed.

Summary. Overall, prior techniques each mitigate part of
the GPU memory bottleneck but fall short of simultaneously
addressing all four challenges. In particular, existing solu-
tions either sacrifice throughput, require manual tuning, or
cannot extend sequence length effectively.

3 ADAPTIVE WORKING SET

Our objective is to design a unified framework that ad-
dresses all four challenges identified above—minimizing
GPU memory usage, achieving high throughput, enabling
long-context training, and providing automatic configura-
tion—specifically for Transformer training. We call it Adap-
tive Working Set Strategy (AdaWS).

AdaWS is based on three key ideas:

• Generalized Computation and Communication
Schedules: Procedure for ensuring correct dependen-
cies while carrying out asynchronous data transfers.
AdaWS orchestrates just-in-time prefetching to ensure
dependencies are available when processor requires
them — providing illusion of larger GPU memory ca-
pacity without sacrificing performance.

• Awareness of Training Environment: Adapts data
placement, batch sizing, offloading, and recomputation
decisions based on discovered hardware environment
(i.e. memory capacities, interconnect bandwidth, pro-
cessor speed) in conjunction with model scale and
sequence length. These runtime choices parameterize
the general template.

• Integrated Activation Offloading & Recomputation
Policies: Balances benefits of saving activations (min-
imizing recomputation) with potential interconnect
bandwidth bottlenecks. AdaWS employs a Dynamic
Programming solver (accurate solution within 100s of
µs) to determine the best activations to offload (for-
ward) and subsequently fetch (backward). As a result,
our approach fully leverages limited interconnect band-
width whilst avoiding congestion and communication-
induced stalls.

3.1 Sliding Window & Prefetching

AdaWS enables training transformers that exceed GPU
memory capacity by maintaining a small, dynamically man-
aged working set of layers in device memory at any given
time. Rather than loading the entire model into GPU mem-
ory, AdaWS retains a depth-wise slice—a limited set of
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consecutive layers—while using host memory as a backing
store. Training can proceed as long as the current layer’s
dependencies are resident in GPU memory.

After completing a block, AdaWS proactively prefetches
the data required for upcoming layers while asynchronously
evicting data no longer needed. If a dependency is not
yet available in GPU memory when required, computation
stalls briefly until the transfer completes and data is ready.
This sliding-window mechanism, coupled with just-in-time
prefetching, ensures high utilization by overlapping com-
putation with data movement whilst maintaining a compact
memory footprint.

During the forward pass, AdaWS computes activations and
transfers the results back to secondary host memory, saving
as many as possible without causing idle time (see 3.2).
Activations associated with the last |window| layers stay in
GPU memory as these will be the next accessed activations
(LIFO ordering). After reaching the head and computing the
loss, backpropagation begins to compute model gradients.
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Figure 2. Adaptive Working Set Strategy for DNN Training.

In Figure 2, each column represents a Transformer layer,
with all training states and most saved activations stored in
the host memory. The dashed blue box indicates the work-
ing set in GPU memory. There is a table in GPU memory
containing inter-layer transitions (residual streams for for-
ward and backward passes) along with two context-windows
(both sized proportional to micro-batch size, though these
are not shown in the figure for simplicity). Unlike inference,
on device context-windows are reused and reset for each

layer.

In Figure 2a, two layers are readily available (orange boxes),
with a third currently transferring from the host memory
(orange diagonal lines). The GPU computes activations for
the layer shown with brick pattern. Activations from the
previous layer (left) are marked as outbound, transferring
to backing host memory. The yellow-outlined box to the
right of the current computation represents an empty buffer
that will be used for the next layer’s activation workspace.
Once the outbound activation transfer completes, we mark
the next non-empty activation slot as available (right of the
yellow box). After the computation finishes, we replace
model parameters with the next layer outside the current
window. The window slides forward until reaching the final
layer, where it contains the last three layers and activations
as readily-available dependencies for backpropagation.

Figure 2b shows the working set during backpropagation,
with the sliding window moving in reverse. Computing
each backward layer requires model weights, forward acti-
vations, and prior gradients (for multiple rounds of gradi-
ent accumulation) as input. Each backward layer updates
gradients before sending updated results back to the host
memory. After completing the current backward layer, we
prefetch dependencies (weights, activations, gradients) for
next downstream layer not in our window.

The general pseudocode forward and backward passes can
be found in Appendix A.

This sliding window approach with asynchronous data trans-
fers enables training large models with minimal GPU mem-
ory. However, achieving high throughput requires aware-
ness of training environment to avoid stalls and minimize
recomputation.

3.2 Avoiding Stalls & Recomputation

3.2.1 Overview

The key to achieving high throughput is to avoid GPU idle
time and additional computation. We must balance these in-
terrelated aspects when determining appropriate data sizing,
window sizing, and saved activation policy. For a given layer
(i.e. a column in Figure 2), the size of weights/gradients
is fixed, but the amount of memory for activations is pro-
portional to micro-batch size. AdaWS first determines an
appropriate micro-batch size, which then gives a concrete
size for each complete layer, allowing us set the window
size in terms of # of layers. Then, we set saved activa-
tion policy to minimize recomputation while avoiding stalls.
These adaptive, runtime decisions are tightly integrated with
hardware environment, model architecture, and sequence
length. We assume a generalized Transformer architecture
parameterized by the table in Figure 10b.
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Potential Stalls. Stalls can occur in three situations:

1. Weight dependencies are not ready during the forward
pass,

2. Activation write-buffer is not available during the for-
ward pass,

3. Weights, forward activations, or gradient dependencies
are not ready during the backward pass.

3.2.2 Data Sizing

How much data should we process during each gradient
accumulation round?

Forward Requirements

To address (1) we must decide how much work (micro-batch
size) to supply per forward-backward round. As long as a
forward layer’s computation exceeds the weight prefetch
duration, the sliding window contents will be ready when
needed. This is a conservative lower-bound2, but provides
strong guarantees. Given a model architecture with ψactive
active parameters per layer, X sequences of length S using
full causal attention where dattn = nQ · hdim, practical pro-
cessing speed of P FLOPs/sec, we can accurately estimate
the forward computation will take3:

Tfwd =
2 ·X · S · (ψactive + S · dattn)

P
sec

We also know the duration it takes to transfer weights: as-
sume ψtotal total parameters per layer with average datatype
size of |τparam| bytes and interconnect bandwidth of BWinter
bytes/sec. The weight transfer time is:

Tparam =
|τparam| · ψtotal

BWinter
sec

Now we wish to satisfy (1) which conservatively implies
Tfwd > Tparam, so we solve for an initial X as

# Sequences = X ≥ |τparam| · ψtotal · P
2 · S · (ψactive + S · dattn) ·BWinter

though, we will correct this to account for gradient transfers.

We determine the realistic hardware constants P and
BWinter at runtime.

Backward Requirements
2With a sufficiently wide window relative to model depth,

prefetch time can actually exceed computation time without caus-
ing idleness as consequence of initial headstart, though this analy-
sis becomes complex.

3Our codebase supports variable length sequences, but here we
assume fixed sequence length for simplicity.

To address (3) we assume that our saved activation policy
(§3.2.4) ensured no idle time occurred during forward pass
and thus already satisfied (2). With this assumption we have
a bound on the quantity of activations that will fetched dur-
ing a window-sized period of backwards layers (each layer
may save/fetch a different quantity, but the total bytes is
bounded for any span of consecutive window-sized layers).
If our final configuration ends up setting a window size of
W layers, satisfying (2) guarantees the maximum number
of bytes saved is bounded by:

Act Bytes Saved In Full Period ≤ W · Tfwd

BWinter

In turn, for any window it will take ≤W · Tfwd sec to fetch
these back.

Additionally, gradients might be a different datatype with
average datatype size |τgrad| where

Tgrad =
|τgrad| · ψtotal

BWinter
=

|τgrad|
|τparam|

· Tparam sec

Thus during any period of W backward layers the total
inbound transfers (activations + weights + gradients) is
bounded by:

Bwd Window Transfer ≤W ·
((

1+
|τgrad|
|τparam|

)
·Tparam+Tfwd

)
sec

We must ensure sufficient micro-batch size such that com-
puting W backward layers > Bwd Window Transfer. A
lower bound for processing time of backwards with full
parameter training is:

Tbwd ≥ 2× Tfwd

where the realistic computation time may be larger with
recomputation or long sequences (we use Flash Atten-
tion (Dao et al., 2022) which has factor of 5 instead of
4 for the amount of bwd attention FLOPs). Thus for
a window of W layers it will take ≥ 2 · W · Tfwd sec.
Now we can further refine # Sequences to ensure that
W · Tbwd ≥ Bwd Window Transfer, yielding the inequality:

2 ·W · Tfwd ≥W ·
((

1 +
|τgrad|
|τparam|

)
· Tparam + Tfwd

)

This provides a relationship between Tfwd and Tparam to
ensure the total computation time during any complete back-
wards window exceeds the total transfer time. Because the
backwards pass starts with a fully populated window, by
induction we are guaranteed that every additional layer (in
reverse) will be ready.
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We now obtain:

Tfwd ≥
(
1 +

|τgrad|
|τparam|

)
· Tparam

as a stricter bound than (1) initially implied. Given this
relationship we determine an appropriate micro-batch size
as

# Sequences = X ≥ (|τparam|+ |τgrad|) · ψtotal · P
2 · S · (ψactive + S · dattn) ·BWinter

This micro-batch size is compatible with the general AdaWS
schedule (§3.1 and Appendix A) and likely does not apply
to other offloading/recomputation strategies.4 The number
of gradient accumulation rounds is then set based upon
user-inputted global batch size.

3.2.3 Window Sizing

How many layers to place in GPU memory?

Once we determine the amount of data to process each
gradient accumulation round we have a wholistic picture
of the total bytes required per complete layer. The total
activation size per layer is:

Abytes = |τact|·X·S·(dattn+2·dctx+dmodel+2·(Eshared+k)·dexpert)

Additionally we add in the fixed size of parameters and
gradients to obtain a full layer size of:

Lbytes = (|τparam|+ |τgrad|) · ψtotal +Abytes

Further, we account for static buffer space: full training
state of embedding layer, unembedding layer, transition
table (|τact| ·X · S · dmodel), context windows (|τact| · 4 ·X ·
S · dctx), and additional kernel workspace. Let this fixed
memory overhead be B total baseline bytes and assume a
GPU memory budget of Cdev. Finally, we set the window
size as:

W =
Cdev −B

Lbytes

3.2.4 Saved Activation Policy

How to decide what activations should be offloaded vs. re-
computed?

4We set additional guards on top of basic equation: process
at least 1 sequence per round, cap the tokens per round to en-
sure W ≥ 2 (§3.2.3), and cap the tokens per round to guarantee
sufficient host memory capacity to fit required minimally saved
activations.

Here we prevent potential stall (2). Our objective to maxi-
mize the amount of saved computation while ensuring that
activation buffers are available for use in the next period.
Given a window size of W we want to satisfy

tfinishTransferi < tstartComputei+W

to ensure write-buffer is ready. We set O discrete options
for possible saved activation choices per layer (in our work
we choose O = 4, described in Figure ??). At a minimum
we require the input to layer along with KV activations to
be saved. We can determine when the start time will occur
for all layers based on tstartComputei = i · Tfwd. Each of the 4
saved activation options per layer has an associated transfer
time and optimization value (computation time associated
with that level). We pass the vector of full layer compute
times (length L for number of layers) along with matrices
of transfer times and optimization values (each are L×O)
to a DP solver that maximizes value while satisfying the
write-buffer ready constraint. 5 The result is a vector of L
saved activation choices, where we only consider the first
L−W options (the last W are saved on device) and each
option is ∈ [0, O).

4 EVALUATION

We evaluate how effectively the proposed AdaWS approach
addresses the four key challenges identified in §2: min-
imizing GPU memory usage, achieving high throughput,
enabling long-context training, and automatic configuration.
We would like to answer the following questions:

• How well does AdaWS reduce GPU memory require-
ments while achieving high throughput?

• How does AdaWS compare to Nvidia’s UVM?

• Can AdaWS support long-context training without per-
formance degradation?

• What are the effects of host memory capacity on
AdaWS’s performance and scalability?

• How well does AdaWS work with larger models and
smaller GPUs?

4.1 Experimental Setup

AdaWS Implementation. Our prototype consists of ≈10K
lines of C. We rely on cublasLt for matrix multiplication
and FA3 (Shah et al., 2025)/FA2 (Dao, 2023) for atten-
tion. All other kernels are implemented in CUDA C for
simple integration with our system. We manually manage

5We implement the Transmission Scheduling DP solver as
a standalone library. This module is heavily optimized – with
assistance of Claude, Gemini, and Codex – and takes on order of
100-500 µs.
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all memory and rely on the GPU runtime for setting depen-
dencies between streams. We found it challenging to apply,
debug, and profile our logic in existing frameworks due to
nested memory managers and autograd engines, motivating
our custom stack. However, we are actively working on
integrating with community ecosystems.

Hardware Platform. We evaluate on two environments:
(1) an H100 with 512 GiB host memory (≈300 GB/s BW)
and (2) an RTX5090 with 192 GiB host memory (≈80
GB/s BW). Both use PCIe 5.0 (≈64 GB/s). These two
configurations allow us to evaluate AdaWS’s scalability
under both server-class and consumer-grade conditions.

Models Evaluated. To cover a spectrum of model scales
and activation characteristics, we evaluate three dense and
three sparse transformer models 1, all using autoregressive
causal attention and standard AdamW (Loshchilov & Hutter,
2019) optimization. The model dimensions are listed in
Table 1.

All models use a standard sequence length of 8K tokens
unless otherwise specified. Global batch sizes are selected
to achieve approximately 1–2% optimizer overhead: 72
sequences for dense models and 180 for sparse models (dou-
bled to 144 and 360, respectively, for DeepSpeed baselines).
Throughput is measured at the third steady-state training
step.

Baselines and their limitations. We compare AdaWS
against strong, state-of-the-art baselines implemented in
PyTorch using optimized kernels such as FlashAttention-3
for attention, Quack/Liger (Hsu et al., 2025; qua) for fused
linear operations, and ScatterMoE (Tan et al., 2024) for
expert processing. Our main baseline systems are the Deep-
Speed ZeRO family (Ren et al., 2021; Rajbhandari et al.,
2021), including ZeRO-1/2: which offloads optimizer state
to host memory, and ZeRO-3: which offloads parameter
and optimizer state.

For dense models, we also include NVIDIA’s Unified Virtual
Memory (UVM) as a system-level offloading baseline that
automatically migrates data between GPU and host memory.

AdaWS is evaluated using a pure 16-bit training state (8Ψ
total memory), while standard DeepSpeed configurations
maintain FP32 master weights, gradients, and optimizer
states (16Ψ total). We retain this configuration since Deep-
Speed’s pure 16-bit mode (available only in ZeRO-2) exhib-
ited poor stability and subpar throughput. To ensure fairness,
we double the global batch size for all DeepSpeed baselines
to equalize the ratio of computation to optimizer-step over-
head. We apply five levels of layer-wise selective activation
checkpointing on top of each ZeRO configuration.

Measuring Throughput. We record MFU based on Peak
TFLOPS of 989 for H100 and 209.5 for RTX 5090. We

consider the model cost of causal attention with no recom-
puation. FlashAttention has a factor of 7 for the attention
term, but we only count this towards HFU. Let Ψactive be
the total number of active, non-embedding parameters. The
number of FLOPs per sequence:

6S · (Ψactive + S · L · nQ · hdim)

4.2 GPU Memory Footprint vs. Throughput
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Figure 3. Minimal device memory usage for AdaWS to surpass
throughput of best baseline.

To answer the question about how well AdaWS performs in
terms of GPU memory requirements while achieving high
throughput, we evaluate the impact of GPU memory foot-
prints on end-to-end training of all six models, comparing
the AdaWS prototype to the baselines.

Figure 5 shows the footprints of GPU memory and the train-
ing performance of 4 smaller models (Llama3-8B, Dense-
15B, OLMoE-7Ba1B, and Sparse-16Ba3B). The results
show that AdaWS shifts the frontier up and to the left across
for all configurations.

AdaWS has substantial performance gains for larger or
sparse models. The reason is primarily due to less recom-
putation, portrayed in Figure 4. Larger models, such as in
5b generate more activations. In this case, the benefits of
our scheme become more apparent. The baselines do not
save activations in host memory. In order to successfully
run, without GPU out-of-memory errors, the baselines must
recompute 75-100% of all forward pass computations. Be-
cause AdaWS shuffles data in and out, in a timely fashion,
we can both keep a small footprint and save + fetch this
activation data asynchronously rather than recompute.

Figure 3 shows a summary of the results, depicting the GPU
memory level where the throughput of AdaWS surpasses
the throughput of highest performing baseline. We see 4x
GPU memory reduction for the large or sparse model cases.
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Table 1. Characteristics of tested models.
Model V L dmodel hdim nQ nctx dexpert Eshared Erouted k

Llama3-8B 128256 32 4096 128 32 8 14336 1 0 0
OLMoE-7Bx1B 50304 16 2048 128 16 16 1024 0 64 8
Dense 15B 128256 64 4096 128 32 8 14336 1 0 0
Sparse-16Bx3B 128256 32 3072 128 24 4 768 0 64 8
Qwen3-32B 152064 64 5120 128 40 8 27648 1 0 0
Qwen3-30Bx3B 151936 48 2048 128 32 4 768 0 128 8

0 500 1,000 1,500 2,000 2,500 3,000 3,500

@ 600 TFLOPS

AWSM (Cdev = 18)

Baseline (Cdev = 75)

1759ms86ms879ms

517ms1732ms83ms862ms
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Figure 4. Dense 15B. AdaWS @ 18 GB vs. Baseline @ 75 GB

4.3 Comparison with UVM

Figure 6 presents the results of training three dense
models—Llama3-8B, Dense-15B, and Qwen3-32B. Across
all configurations, AdaWS achieves substantially higher
MFU than UVM with 100%, 50%, and 0% recompute con-
figurations.

The key reason is that UVM relies on a page-fault–driven
mechanism, which introduces stalls and demand-paging la-
tency, resulting in unstable performance for large models or
long sequence lengths. The massive performance degrada-
tion coincides with increased overall application footprint.
With a large gap between total footprint vs. GPU memory
capacity, UVM severely struggles.

In contrast, AdaWS’s proactive management of a small
working set through just-in-time prefetching eliminates
these stalls, delivering significantly more stable and effi-
cient utilization.

4.4 Long-Context

Following prior work, we adopt Llama3-8B as the refer-
ence model to evaluate the effectiveness of long-context
training using AdaWS. Table 2 compares AdaWS with
two single-device long-context training methods: Mini-
Sequence Transformer (MST) (Luo et al., 2025) and Arctic
Long Sequence Training (ALST) (Bekman et al., 2025).

For sequence lengths that are trained using existing strate-
gies, AdaWS improves throughput by 1.4×–2.2×. More im-
portantly, AdaWS extends the trainable context length fron-
tier by up to 4× under typical GPU memory budgets. Even
under tighter device memory constraints, AdaWS maintains
high efficiency with minimal degradation. For example,

Sequence Length

Strategy 32K 64K 128K 256K 512K

MST
37.2%
(5.2K) ✗ ✗ ✗ ✗

ALST
24.4%
(3.4K)

26.1%
(2.7K)

32.4%
(2.1K) ✗ ✗

AdaWS
57.1%
(8.0K)

56%
(5.7K)

53.1%
(3.6K)

51.9%
(2.1K)

42.5%
(0.9K)

Table 2. MFU (Tok/sec) at Long-Contexts for full BF16 Llama3-
8B model on an H100 GPU. The memory budget is Cdev = 80
GiB and Chost = 256 GiB.

with a device memory capacity of Cdev = 24 GiB and se-
quence length S = 256K, AdaWS sustains 2024 Tok/s
compared to 2133 Tok/s at full memory utilization (51.4%
vs. 51.9% MFU).

At longer sequence lengths, the quadratic cost of attention
begins to dominate overall computation. For Llama3-8B,
attention operations account for roughly 82% of total FLOPs
at S = 256K and 90% at S = 512K.

As an increasing proportion of time is spent on token-to-
token communication rather than forward progression, the
system gains sufficient slack to transfer full activations back
to host memory without congestion—assuming adequate
host capacity. This enables AdaWS to avoid recomputation
while maintaining smooth dataflow. Our design assumes
that, at minimum, inputs to each Transformer block are
retained, making the capacity of the secondary memory
pool the dominant factor for long-context scalability.

As illustrated in Figure 7, with sufficiently large secondary
memory, AdaWS keeps the GPU consistently supplied with
productive work. The resulting MFU for long-context train-
ing is nearly identical to the throughput achieved by the opti-
mized FlashAttention-3 kernel. This indicates that AdaWS’s
automatic working set management is operating near its the-
oretical limit—there is virtually no remaining headroom
for throughput improvement. While AdaWS achieves near-
perfect hardware utilization, the inherent computational cost
of long-context attention remains an open challenge.
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Figure 5. Device Memory vs. Throughput across model configurations. Sequence length 8192 on H100.
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Figure 6. Throughput Comparison with UVM

4.5 Usage of Host Memory Capacity

Since AdaWS and other memory-optimization approaches
rely on host memory as a backing store to reduce GPU
memory pressure, it is essential to understand how the host
memory requirements and their impacts on performance and
scalability.

We monitor the Linux-reported Resident Set Size (RSS) for
the experiments described in §4.2, and plot the peak host
memory usage in Figure 8. Although we expect the base-
lines to consume roughly twice as much host memory—due
to their use of higher-precision training states (as discussed
in §4.1)—the observed footprints are significantly larger.

In particular, ZeRO-3 baselines exhibit host memory con-
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Figure 7. Long-Context on H100 with large host pool 480 GiB.
Given sufficient backing memory, MFU approaches the throughput
of attention kernel.

sumption between 28Ψ and 32Ψ, nearly double the antici-
pated training-state size. This excessive usage arises from
the nested design of the DeepSpeed engine and the inter-
action between PyTorch’s garbage collection and memory
allocator, making it difficult to track and constrain.

In contrast, AdaWS maintains precise control over host
buffers. Its host memory footprint corresponds closely to
8Ψ—the expected size of the training state—plus a pre-
dictable, small amount of additional space for saved acti-
vations. This controlled and transparent memory behavior
ensures scalability across varying host capacities and pre-
vents unpredictable over-allocation.

Maintaining a tight host memory footprint is critical for
scaling model training, especially in local training and fine-
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Figure 8. Host Memory Usage

tuning scenarios where host capacity is limited. Figure 9
illustrates that AdaWS enables high-performance training
of models that the baselines fail to execute.

In baseline systems, the pure 16-bit precision mode fre-
quently triggers device out-of-memory (OOM) errors, un-
derscoring the importance of coordinated device and host
buffer management.

The results for Qwen30B×3B in Figure 9a use a sequence
length of 4K (others use 8K) to align with NVIDIA’s NeMo
benchmark on an 8-GPU DGX-H100 cluster employing
expert parallelism.

Under comparable conditions, AdaWS achieves 38% higher
per-GPU throughput while using only 40 GiB of device
memory. This improvement highlights the advantage of
localized computation—our single-device setup avoids the
collective communication overheads that introduce blocking
behavior in multi-GPU pipelines.

Beyond supporting larger models, AdaWS’s host buffer
management is equally essential for sustaining long-
sequence training at near-optimal throughput, achieving
better scalability and efficiency.

4.6 Large Models and Small GPU

Evaluating the effectiveness of AdaWS’s automatic config-
uration presents a unique challenge because existing base-
lines lack comparable self-tuning capabilities. Rather than
exhaustively testing many combinations of models and hard-
ware configurations, we focus on two representative scenar-
ios where baseline systems fail to work: training larger-scale
models and training on a workstation-class GPU with 32GB
memory.

Large-Model Evaluation. We test AdaWS on two large-
scale Transformer models that cannot be trained under any
baseline configurations due to out-of-memory failures. Fig-

24 28 40 76

25

30

35

40

45

50

55

60

1.8K

2.5K

2.6K 2.6K

11.5K

14.4K

16.5K 16.6K

Device Memory Limit (GiB)

M
F
U

(%
)

Qwen3-32B Qwen3-30Ba3B

(a) H100 Large Model Performance, Host Limit = 320 GB

12 16 24 30

25
30
35
40
45
50
55
60
65
70
75
80

2.1K

3.1K
3.2K

3.3K

1.1K

1.6K 1.6K
1.6K

10.0K

12.3K

14.6K
14.8K

2.7K

4.0K

5.4K 5.5K

Device Memory Limit (GiB)

M
F
U

(%
)

Llama3-8B Dense 15B
OLMoE 7Ba1B Sparse 16Ba3B

(b) RTX 5090 Training Performance, Host Limit = 140 GB

Figure 9. Our precise buffer management enables high-throughput
large model training, even with low GPU memory.

ure 9a shows that AdaWS successfully adapts to both mod-
els without manual tuning and achieves up to 55% MFU,
demonstrating that its automatic configurations and buffer
management scale effectively to high-parameter regimes.

Workstation-Class GPU We further evaluate AdaWS on
workstation grade Nvida RTX 5090 GPU with 12 GB
16 GB, 24 GB, and 30 GB of GPU memory setups. Fig-
ure 9b shows that across four smaller models, AdaWS
achieves 55% to 80% MFU. These results confirm
AdaWS’s ability to maintain high utilization and stable per-
formance even when operating under tight memory budgets.

Overall, these experiments show the robustness of AdaWS
across scales: it can train models that exceed the capacity
of baseline systems while preserving strong efficiency on
smaller, resource-constrained hardware.

5 LIMITATIONS AND FUTURE WORK

AdaWS is developed and evaluated specifically for Trans-
former architectures, where the separation between model
layers and activation dependencies naturally aligns with
our working-set abstraction. However, the underlying
ideas—dynamic working-set tracking, just-in-time prefetch-
ing, and automatic configuration—are more general. We
believe similar principles could be applied to other deep
learning architectures.
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This work focuses on single-GPU training to isolate the
effects of automatic memory management without interfer-
ence from inter-GPU synchronization or communication.
We view AdaWS as a building block for distributed training
systems, where inter-device dependencies, timing coordi-
nation, and network bandwidth contention will introduce
additional complexity. Extending AdaWS to multi-GPU
environments is an important direction for future work.

Our comparisons with baseline systems have practical limi-
tations. Not all frameworks support identical datatype con-
figurations or kernel implementations, which may influence
absolute throughput. We have attempted to align settings
wherever possible. Despite differences, AdaWS consistently
demonstrates superior efficiency across configurations.

All experiments in this paper are conducted on NVIDIA
GPUs. Because AdaWS does not depend on hardware-
supported paging mechanisms, its design should be portable
to other accelerators, such as AMD GPUs, TPUs, or emerg-
ing AI chips with hierarchical memory. Nevertheless, val-
idating AdaWS on these platforms will require additional
engineering and evaluation, which we leave as future work.

6 CONCLUSION

This paper presents Adaptive Working Set (AdaWS), a
framework that addresses the four major challenges in GPU-
based Transformer training: minimizing GPU memory us-
age, achieving high throughput, enabling long-context train-
ing, and providing automatic configuration. AdaWS dynam-
ically manages the active working set through just-in-time
prefetching and precise host–device coordination, allow-
ing models far exceeding GPU memory capacity to train
efficiently on a single device.

Our experiments demonstrate that AdaWS significantly out-
performs state-of-the-art baselines across model sizes and
configurations. It achieves up to 4× lower GPU memory
usage while sustaining equal or higher throughput, and ex-
tends the frontier of trainable context lengths by up to 4×.

In addition to reducing GPU memory, AdaWS also mini-
mizes host memory consumption, achieving predictable
and tightly bounded usage compared to baseline systems
such as ZeRO. This improvement has practical implications
for GPU cluster design and scheduling, as it reduces host
resource contention and improves training scalability.

This study demonstrates that careful working-set man-
agement can mitigate physical GPU memory limitations,
achieving efficient, high-throughput, and scalable training
for large models.
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A FORWARD & BACKWARD PSEUDOCODE

Algorithm 1 AdaWS: Forward

Input: Ring capacities: Rparam, Rgrad, Ract, # layers: L, #
Seq Groups: M , Chunks per group: |S0| . . . |SM−1|

nextGrad = L− 1
for each layer k = 0 . . . L− 1 do
Wk = consume(strmcomp, parameterRing)
for each seq group Si; i = 0 . . .M − 1 do

// overwrite fwd context, Fctx
for each chunk Cj, Si

; j = 0 . . . |Si| − 1 do
let c = global chunk index for Cj, Si

Ak,c = consume(strmcomp, activationRing)
// PERFORM COMPUTATION: use Ak,c as can-
vas to write activations, update Fctx in place at
position j, and repopulate transition table
T[c] = fwd(strmcomp, Wk, T[c], Fctx, Ak,c)
if to send Ak,c home then

// set dependency to make outbound stream
wait upon completion of forward computation
setDepend(strmout, strmcomp)
outbound(strmout, H[k, c], Ak,c, save size)
// after finishing transfer back home make this
slot available for reuse
produce(strmout, Ak,c, activationRing)

else
// otherwise we can immediately repopulate for
use in backwards pass
produce(strmcomp, Ak,c, activationRing)

end if
end for

end for
// check if we need to prefetch another layer
if k +Rparam < L then

setDepend(strmin, strmcomp)
// overwrite current layer
inbound(strmin, Wk, H[Wk+Rparam ], layer size)
// add updated layer that can be later consumed
produce(strmin, Wk, parameterRing)

else
// we will use this layer in bwd pass so readd to ring
produce(strmcomp, Wk, parameterRing)
// submit prefetch requests to fill gradient ring for
use in bwd
while nextGrad ≥ L−Rgrad do
dW = consume(strmin, gradRing)
inbound(strmin, dW , H[dWnextGrad], grad size)
produce(strmin, dW , gradRing)
nextGrad -= 1

end while
end if

end for

Algorithm 2 AdaWS: Backward

Input: data xi, size m
for each layer k = L− 1 . . . 0 do
Wk = consume(strmcomp, parameterRing)
dWk = consume(strmcomp, gradRing)
for each seq group Si; i =M − 1 . . . 0 do

// ensure Fctx is populated correctly for this group
setDepend(strmcomp, strmctx)
// zero-out context gradients
reset(Bctx)
for each chunk Cj, Si ; j = |Si| − 1 . . . 0 do

let c = global chunk index for Cj, Si

// retrieve forward activations
Ak,c = consume(strmcomp, activationRing)
// PERFORM COMPUTATION: accumulate con-
text gradients in Bctx, accumulate parameter gra-
dients in dWk, repopulate transition table with
activation gradients
T[c] = bwd(strmcomp, Wk, T[c], Fctx, Ak,c, dWk,
Bctx)
// replace contents of Fctx at position j with one
needed by prior seq group or prior layer
setDepend(strmctx, strmcomp)
// either copies ctx from activation ring or retrieves
from home
updateFwdCtx(strmctx, Fctx, k, i, j, activationRing,
H)
if to retrieve another activation then

setDepend(strmin, strmcomp)
// overwrite current forward activations with
data we will need in the future
inbound(strmin, Ak,c, H[next act], save size)
// after finishing transfer mark this activation
ready for use
produce(strmin, Ak,c, activationRing)

end if
end for

end for
// send updated gradient home
setDepend(strmout, strmcomp)
outbound(strmout, dWk, H[dWk], grad size)
// check if we need to prefetch another gradient and
replace current one after it is sent home
if k −Rgrad ≥ 0 then

setDepend(strmin, strmout)
inbound(strmin, dWk, H[dWk−Rgrad ], grad size)
produce(strmin, dWk, gradRing)

end if
// check if we need to prefetch another layer
if k −Rparam ≥ 0 then

setDepend(strmin, strmcomp)
// overwrite current layer
inbound(strmin, Wk, H[Wk−Rparam ], layer size)
// add updated layer that can be later consumed
produce(strmin, Wk, parameterRing)

end if
end for
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B AUTCONFIGURATION SCOPE

To meet our objective of flexibility across hardware environ-
ments, Transformer scales, and sequence lengths we design
a general procedure that can be automatically configured
based upon inputs in Figure 10.

Host Memory

CHost bytes

I/O Interface

I/O Interface

Device Memory

CDevice bytes

Processing

P FLOPs/sec

BWhost

BWdev

BWdev

BWin bytes/sec BWout bytes/sec

(a) Hardware Environment

Symbol Description
S Maximum Sequence Length
τ Datatype specifications
V Vocabulary size
L Number of layers
dmodel Model hidden dimension
hdim Attention head dimension
nQ Number of query heads
nctx Number of key-value heads
dexpert Expert network dimension
Eshared Number of shared experts
Erouted Number of routed experts
k Top-k experts per token

(b) Transformer Knobs.
Note for dense models: Eshared = 1, Erouted = 0, k = 0

Figure 10. Inputs to AdaWS

We maintain six “structures” that track the contents of device
memory: three ring buffers and three tables. The contents
of the ring buffers are: (1) layer weights, (2) activation slots
(for writing during forward and reading during backwards),
and (3) layer gradients. The tables are for: (4) transitions
between layers (i.e. residual stream, for both forward and
backward) and (5 + 6) layer context windows (forward +

backward).

In host memory we maintain the full training state (all
weights, gradients, and optimizer states) along with space
dedicated for activations generated during forward pass that
will later be retrieved during backprop.

We assume user inputs memory capacities Cdev & Chost,
sequence length S, and Transformer spec (10b). The system
discovers processor speed and bandwidths.

Abiding by hard memory constraints is important for ideal
resource provisioning and job scheduling; we haven’t found
similar systems that can make this guarantee.

Symbol Description
Nrounds Number of Rounds Per Step
Nchunks Number of Chunks Per Round
mchunk Chunk Size (in tokens)
Rparam Parameter Ring Buffer Capacity := [1, L)
Ract Activation Ring Capacity := [1, L ·Nchunks)
Rgrad Gradient Ring Capacity := [1, L)
Asave {L} × {Nchunks} → saved activation level

Table 3. AdaWS Dataflow Configuration


